Category Journal papers

Experimental post-selection loophole-free time-bin and energy-time nonlocality with integrated photonics

Time-bin encoding has been widely used for implementing quantum key distribution (QKD) on optical fiber channels due to its robustness with respect to drifts introduced by the optical fiber. However, due to the use of interferometric structures, achieving stable and low intrinsic Quantum Bit Error rate (QBER) in time-bin systems can be challenging. A key device for decoy-state prepare & measure QKD is represented by the state encoder, that must generate low-error and stable states with different values of mean photon number. Here we propose the MacZac (Mach-Zehder-Sagnac), a time-bin encoder with ultra-low intrinsic QBER (<2e-5) and high stability. The device is based on nested Sagnac and Mach-Zehnder interferometers and uses a single phase modulator for both decoy and state preparation, greatly simplifying the optical setup. The encoder does not require any active compensation or feedback system, and it can be scaled for the generation of states with arbitrary dimension. We experimentally realized and tested the device performances as a stand-alone component and in a complete QKD experiments. Thanks to the capacity to combine extremely low QBER, high stability and experimental simplicity, the proposed device can be used as a key building block for future high-performance, low-cost QKD systems.

Deployment-ready quantum key distribution over a classical network infrastructure in Padua

Current technological progress is driving Quantum Key Distribution towards a commercial and world widescale expansion. Its capability to deliver unconditionally secure communication will be a fundamental feature in the next generations of telecommunication networks. Nevertheless, demonstrations of QKD implementation in a real operating scenario and their coexistence with the classical telecom infrastructure are of fundamental importance for reliable exploitation. Here we present a Quantum Key Distribution application implemented overa classical fiber-based infrastructure. By exploiting just a single fiber cable for both the quantum and the classical channel and by using a simplified receiver scheme with just one single-photon detector, we demonstrate the feasibility of low-cost and ready-to-use Quantum Key Distribution systems compatible with standard classical infrastructure.

Security bounds for decoy-state QKD with arbitrary photon-number statistics

The decoy-state method is a standard enhancement to quantum key distribution (QKD) protocols that has enabled countless QKD experiments with inexpensive light sources. However, new technological advancements might require further theoretical study of this technique. In particular, the decoy-state method is typically described under the assumption of a Poisson statistical distribution for the number of photons in each QKD pulse. This is a practical choice, because prepare-and-measure QKD is often implemented with attenuated lasers, which produce exactly this distribution. However, sources that do not meet this assumption are not guaranteed to be compatible with decoy states. In this work, we provide security bounds for decoy-state QKD using a source with an arbitrary photon emission statistic. We consider both the asymptotic limit of infinite key and the finite-size scenario, and evaluate two common decoy-state schemes: the vacuum+weak and one-decoy protocols. We numerically evaluate the performance of the bounds, comparing three realistic statistical distributions (Poisson, thermal, binomial), showing that they are all viable options for QKD.

Versatile and Concurrent FPGA-Based Architecture for Practical Quantum Communication Systems

This article presents a hardware and software architecture, which can be used in those systems that implement practical quantum key distribution (QKD) and quantum random-number generation (QRNG) schemes. This architecture fully exploits the capability of a System on a Chip (SoC), which comprehends both a field-programmable gate array (FPGA) and a dual-core CPU unit. By assigning the time-related tasks to the FPGA and the management to the CPU, we built a flexible system with optimized resource sharing on a commercial off-the-shelf (COTS) evaluation board, which includes an SoC. Furthermore, by changing the dataflow direction, the versatile system architecture can be exploited as a QKD transmitter, QKD receiver, and QRNG control-acquiring unit. Finally, we exploited the dual-core functionality and realized a concurrent stream device to implement a practical QKD transmitter, where one core continuously receives fresh data at a sustained rate from an external QRNG source, while the other operates with the FPGA to drive the qubit transmission to the QKD receiver. The system was successfully tested on a long-term run proving its stability and security. This demonstration paves the way toward a more secure QKD implementation, with fully unconditional security as the QKD states are entirely generated by a true random process and not by deterministic expansion algorithms. Eventually, this enables the realization of a standalone quantum transmitter, including both the random numbers and the qubit generation.

Practical Semi-Device Independent Randomness Generation Based on Quantum State’s Indistinguishability

Semi-device independent (Semi-DI) quantum random number generators (QRNG) gained attention for security applications, offering an excellent trade-off between security and generation rate. This paper presents a proof-of-principle time-bin encoding semi-DI QRNG experiments based on a prepare-and-measure scheme. The protocol requires two simple assumptions and a measurable condition: an upper-bound on the prepared pulses' energy. We lower-bound the conditional min-entropy from the energy-bound and the input-output correlation, determining the amount of genuine randomness that can be certified. Moreover, we present a generalized optimization problem for bounding the min-entropy in the case of multiple-input and outcomes in the form of a semidefinite program (SDP). The protocol is tested with a simple experimental setup, capable of realizing two configurations for the ternary time-bin encoding scheme. The experimental setup is easy-to-implement and comprises commercially available off-the-shelf (COTS) components at the telecom wavelength, granting a secure and certifiable entropy source. The combination of ease-of-implementation, scalability, high-security level, and output-entropy make our system a promising candidate for commercial QRNGs.

Resource-effective Quantum Key Distribution: a field-trial in Padua city center

Field-trials are of key importance for novel technologies seeking commercialization and wide-spread adoption. This is certainly also the case for Quantum Key Distribution (QKD), which allows distant parties to distill a secret key with unconditional security. Typically, QKD demonstrations over urban infrastructures require complex stabilization and synchronization systems to maintain a low Quantum Bit Error (QBER) and high secret key rates over time. Here we present a field-trial which exploits a low-complexity self-stabilized hardware and a novel synchronization technique, to perform QKD over optical fibers deployed in the city center of Padua, Italy. In particular, two techniques recently introduced by our research group are evaluated in a real-world environment: the iPOGNAC polarization encoder was used for the preparation of the quantum states, while the temporal synchronization was performed using the Qubit4Sync algorithm. The results here presented demonstrate the validity and robustness of our resource-effective QKD system, that can be easily and rapidly installed in an existing telecommunication infrastructure, thus representing an important step towards mature, efficient and low-cost QKD systems.

Full daylight quantum-key-distribution at 1550 nm enabled by integrated silicon photonics

The future envisaged global-scale quantum communication network will comprise various nodes interconnected via optical fibers or free-space channels, depending on the link distance. The free-space segment of such a network should guarantee certain key requirements, such as daytime operation and the compatibility with the complementary telecom-based fiber infrastructure. In addition, space-to-ground links will require the capability of designing light and compact quantum devices to be placed in orbit. For these reasons, investigating available solutions matching all the above requirements is still necessary. Here we present a full prototype for daylight quantum key distribution at 1550 nm exploiting an integrated silicon-photonics chip as state encoder. We tested our prototype in the urban area of Padua (Italy) over a 145m-long free-space link, obtaining a quantum bit error rate around 0.5% and an averaged secret key rate of 30 kbps during a whole sunny day (from 11:00 to 20:00). The developed chip represents a cost-effective solution for portable free-space transmitters and a promising resource to design quantum optical payloads for future satellite missions.

Simple Quantum Key Distribution with qubit-based synchronization and a self-compensating polarization encoder

Quantum Key Distribution (QKD) relies on quantum communication to allow distant parties to share a secure cryptographic key. Widespread adoption of QKD in current telecommunication networks will require the development of simple, low cost and stable systems. However, current QKD implementations usually include additional hardware that perform auxiliary tasks such as temporal synchronization and polarization basis tracking. Here we present a polarization-based QKD system operating at 1550 nm that performs synchronization and polarization compensation by exploiting only the hardware already needed for the quantum communication task. Polarization encoding is performed by a self-compensating Sagnac loop modulator which exhibits high temporal stability and the lowest intrinsic quantum bit error rate reported so far.The QKD system was tested over a fiber-optic link, demonstrating tolerance up to about 40 dB of channel losses. Thanks to its reduced hardware requirements and the quality of the source, this work represents an important step towards technologically mature QKD systems.

Stable, low-error and calibration-free polarization encoder for free-space quantum communication

iPognac
Polarization-encoded free-space Quantum Communication requires a quantum state source featuring fast polarization modulation, long-term stability and a low intrinsic error rate. Here we present a source based on a Sagnac interferometer and composed of polarization maintaining fibers, a fiber polarization beam splitter and an electro-optic phase modulator. The system generates predetermined polarization states with a fixed reference frame in free-space that does not require calibration neither at the transmitter nor at the receiver. In this way we achieve long-term stability and low error rates. A proof-of-concept experiment is also reported, demonstrating a Quantum Bit Error Rate lower than 0.2% for several hours without any active recalibration of the devices.

New All-fiber autocompensating source for polarization QKD

Quantum key distribution (QKD) allows distant parties to exchange cryptographic keys with unconditional security by encoding information on the degrees of freedom of photons. Polarization encoding has been extensively used for QKD along free-space, optical fiber, and satellite links. However, the polarization encoders used in such implementations are unstable, expensive, and complex and can even exhibit side channels that undermine the security of the protocol. In our recently published manuscript (Agnesi et al. Opt. Lett 44(10) 2398 (2019); https://doi.org/10.1364/OL.44.002398) we propose and test a new polarization encoder: the POGNAC (for POlarization SaGNAC). The POGNAC combines a simple design and high stability reaching an low intrinsic quantum bit error rate. Since realization is possible from the 800 to the 1550 nm band using commercial off-the-shelf devices, our polarization modulator is a promising solution for free-space, fiber, and satellite-based QKD.